

Welcome to Pitaya’s documentation!

Contents:

	Overview
	Features

	Architecture

	Who’s Using it

	How To Contribute?

	Features
	Frontend and backend servers

	Groups

	Listeners

	Acceptor Wrappers

	Message forwarding

	Message push

	Modules

	Monitoring

	Pipelines

	RPCs

	Server operation mode

	Serializers

	Service discovery

	Sessions

	Communication
	Establishing the connection

	Configuration
	Service Discovery

	RPC Service

	Connection

	Metrics Reporting

	Concurrency

	Modules

	Default Pipelines

	Groups

	Pitaya API
	Handlers

	Remotes

	Pitaya CLI
	Installing

	Usage

	Examples

	Tracing
	Using Jaeger tracing

	Testing Locally

Indices and tables

	Index

	Module Index

	Search Page

Overview

Pitaya is an easy to use, fast and lightweight game server framework inspired by starx [https://github.com/lonnng/starx] and pomelo [https://github.com/NetEase/pomelo] and built on top of nano [https://github.com/lonnng/nano]’s networking library.

The goal of pitaya is to provide a basic, robust development framework for distributed multiplayer games and server-side applications.

Features

	User sessions - Pitaya has support for user sessions, allowing binding sessions to user ids, setting custom data and retrieving it in other places while the session is active

	Cluster support - Pitaya comes with support to default service discovery and RPC modules, allowing communication between different types of servers with ease

	WS and TCP listeners - Pitaya has support for TCP and Websocket acceptors, which are abstracted from the application receiving the requests

	Handlers and remotes - Pitaya allows the application to specify its handlers, which receive and process client messages, and its remotes, which receive and process RPC server messages. They can both specify custom init, afterinit and shutdown methods

	Message forwarding - When a server receives a handler message it forwards the message to the server of the correct type

	Client library SDK - libpitaya [https://github.com/topfreegames/libpitaya] is the official client library SDK for Pitaya

	Monitoring - Pitaya has support for Prometheus and statsd by default and accepts other custom reporters that implement the Reporter interface

	Open tracing compatible - Pitaya is compatible with open tracing [http://opentracing.io/], so using Jaeger [https://github.com/jaegertracing/jaeger] or any other compatible tracing framework is simple

	Custom modules - Pitaya already has some default modules and supports custom modules as well

	Custom serializers - Pitaya natively supports JSON and Protobuf messages and it is possible to add other custom serializers as needed

	Write compatible servers in other languages - Using libpitaya-cluster [https://github.com/topfreegames/libpitaya-cluster] its possible to write pitaya-compatible servers in other languages that are able to register in the cluster and handle RPCs, there’s already a csharp library that’s compatible with unity and a WIP of a python library in the repo.

	REPL Client for development/debugging - Pitaya-cli [https://github.com/topfreegames/pitaya-cli] is a REPL client that can be used for making development and debugging of pitaya servers easier.

	Bots for integration/stress tests - Pitaya-bot [https://github.com/topfreegames/pitaya-bot] is a server test framework that can easily copy users behaviour to test corner case scenarios, which can validate the responses received, or make massive accesses into pitaya servers.

Architecture

Pitaya was developed considering modularity and extendability at its core, while providing solid basic functionalities to abstract client interactions to well defined interfaces. The full API documentation is available in Godoc format at godoc [https://godoc.org/github.com/topfreegames/pitaya].

Who’s Using it

Well, right now, only us at TFG Co, are using it, but it would be great to get a community around the project. Hope to hear from you guys soon!

How To Contribute?

Just the usual: Fork, Hack, Pull Request. Rinse and Repeat. Also don’t forget to include tests and docs (we are very fond of both).

Features

Pitaya has a modular and configurable architecture which helps to hide the complexity of scaling the application and managing clients’ sessions and communications.

Some of its core features are described below.

Frontend and backend servers

In cluster mode servers can either be a frontend or backend server.

Frontend servers must specify listeners for receiving incoming client connections. They are capable of forwarding received messages to the appropriate servers according to the routing logic.

Backend servers don’t listen for connections, they only receive RPCs, either forwarded client messages (sys rpc) or RPCs from other servers (user rpc).

Groups

Groups are structures which store information about target users and allows sending broadcast messages to all users in the group and also multicast messages to a subset of the users according to some criteria.

They are useful for creating game rooms for example, you just put all the players from a game room into the same group and then you’ll be able to broadcast the room’s state to all of them.

Listeners

Frontend servers must specify one or more acceptors to handle incoming client connections, Pitaya comes with TCP and Websocket acceptors already implemented, and other acceptors can be added to the application by implementing the acceptor interface.

Acceptor Wrappers

Wrappers can be used on acceptors, like TCP and Websocket, to read and change incoming data before performing the message forwarding. To create a new wrapper just implement the Wrapper interface (or inherit the struct from BaseWrapper) and add it into your acceptor by using the WithWrappers method. Next there are some examples of acceptor wrappers.

Rate limiting

Read the incoming data on each player’s connection to limit requests troughput. After the limit is exceeded, requests are dropped until slots are available again. The requests count and management is done on player’s connection, therefore it happens even before session bind. The used algorithm is the Leaky Bucket [https://en.wikipedia.org/wiki/Leaky_bucket#Comparison_with_the_token_bucket_algorithm]. This algorithm represents a leaky bucket that has its output flow slower than its input flow. It saves each request timestamp in a slot (of a total of limit slots) and this slot is freed again after interval. For example: if limit of 1 request in an interval of 1 second, when a request happens at 0.2s the next request will only be handled by pitaya after 1s (at 1.2s).

0 request
|--------|
 0.2s
0 available again
|------------------------|
|- 0.2s -|----- 1s ------|

Message forwarding

When a server instance receives a client message, it checks the target server type by looking at the route. If the target server type is different from the receiving server type, the instance forwards the message to an appropriate server instance of the correct type. The client doesn’t need to take any action to forward the message, this process is done automatically by Pitaya.

By default the routing function chooses one instance of the target server type at random. Custom functions can be defined to change this behavior.

Message push

Messages can be pushed to users without previous information about either session or connection status. These push messages have a route (so that the client can identify the source and treat properly), the message, the target ids and the server type the client is expected to be connected to.

Modules

Modules are entities that can be registered to the Pitaya application and must implement the defined interface [https://github.com/topfreegames/pitaya/tree/master/interfaces/interfaces.go#L24]. Pitaya is responsible for calling the appropriate lifecycle methods as needed, the registered modules can be retrieved by name.

Pitaya comes with a few already implemented modules, and more modules can be implemented as needed. The modules Pitaya has currently are:

Binary

This module starts a binary as a child process and pipes its stdout and stderr to info and error log messages, respectively.

Unique session

This module adds a callback for OnSessionBind that checks if the id being bound has already been bound in one of the other frontend servers.

Binding storage

This module implements functionality needed by the gRPC RPC implementation to enable the functionality of broadcasting session binds and pushes to users without knowledge of the servers the users are connected to.

Monitoring

Pitaya has support for metrics reporting, it comes with Prometheus and Statsd support already implemented and has support for custom reporters that implement the Reporter interface. Pitaya also comes with support for open tracing compatible frameworks, allowing the easy integration of Jaeger and others.

The list of metrics reported by the Reporter is:

	Response time: the time to process a message, in nanoseconds. It is segmented
by route, status, server type and response code;

	Process delay time: the delay to start processing a message, in nanoseconds;
It is segmented by route and server type;

	Exceeded Rate Limit: the number of blocked requests by exceeded rate limiting;

	Connected clients: number of clients connected at the moment;

	Server count: the number of discovered servers by service discovery. It is
segmented by server type;

	Channel capacity: the available capacity of the channel;

	Dropped messages: the number of rpc server dropped messages, that is, messages that are not handled;

	Goroutines count: the current number Goroutines;

	Heap size: the current heap size;

	Heap objects count: the current number of objects at the heap;

	Worker jobs retry: the current amount of RPC reliability worker job retries;

	Worker jobs total: the current amount of RPC reliability worker jobs. It is
segmented by job status;

	Worker queue size: the current size of RPC reliability worker job queues. It
is segmented by each available queue.

Custom Metrics

Besides pitaya default monitoring, it is possible to create new metrics. If using only Statsd reporter, no configuration is needed. If using Prometheus, it is necessary do add a configuration specifying the metrics parameters. More details on doc and this example [https://github.com/topfreegames/pitaya/tree/master/examples/demo/custom_metrics].

Pipelines

Pipelines are middlewares which allow methods to be executed before and after handler requests, they receive the request’s context and request data and return the request data, which is passed to the next method in the pipeline.

RPCs

Pitaya has support for RPC calls when in cluster mode, there are two components to enable this, RPC client and RPC server. There are currently two options for using RPCs implemented for Pitaya, NATS and gRPC, the default is NATS.

There are two types of RPCs, Sys and User.

Sys RPCs

These are the RPCs done by the servers when forwarding handler messages to the appropriate server type.

User RPCs

User RPCs are done when the application actively calls a remote method in another server. The call can specify the ID of the target server or let Pitaya choose one according to the routing logic.

User Reliable RPCs

These are done when the application calls a remote using workers, that is, Pitaya retries the RPC if any error occurrs.

Important: the remote that is being called must be idempotent; also the ReliableRPC will not return the remote’s reply since it is asynchronous, it only returns the job id (jid) if success.

Server operation mode

Pitaya has two types of operation: standalone and cluster mode.

Standalone mode

In standalone mode the servers don’t interact with one another, don’t use service discovery and don’t have support to RPCs. This is a limited version of the framework which can be used when the application doesn’t need to have different types of servers or communicate among them.

Cluster mode

Cluster mode is a more complete mode, using service discovery, RPC client and server and remote communication among servers of the application. This mode is useful for more complex applications, which might benefit from splitting the responsabilities among different specialized types of servers. This mode already comes with default services for RPC calls and service discovery.

Serializers

Pitaya has support for different types of message serializers for the messages sent to and from the client, the default serializer is the JSON serializer and Pitaya comes with native support for the Protobuf serializer as well. New serializers can be implemented by implementing the serialize.Serializer interface.

The desired serializer can be set by the application by calling the SetSerializer method from the pitaya package.

Service discovery

Servers operating in cluster mode must have a service discovery client to be able to work. Pitaya comes with a default client using etcd, which is used if no other client is defined. The service discovery client is responsible for registering the server and keeping the list of valid servers updated, as well as providing information about requested servers as needed.

Sessions

Every connection established by the clients has an associated session instance, which is ephemeral and destroyed when the connection closes. Sessions are part of the core functionality of Pitaya, because they allow asynchronous communication with the clients and storage of data between requests. The main features of sessions are:

	ID binding - Sessions can be bound to an user ID, allowing other parts of the application to send messages to the user without needing to know which server or connection the user is connected to

	Data storage - Sessions can be used for data storage, storing and retrieving data between requests

	Message passing - Messages can be sent to connected users through their sessions, without needing to have knowledge about the underlying connection protocol

	Accessible on requests - Sessions are accessible on handler requests in the context instance

	Kick - Users can be kicked from the server through the session’s Kick method

Even though sessions are accessible on handler requests both on frontend and backend servers, their behavior is a bit different if they are a frontend or backend session. This is mostly due to the fact that the session actually lives in the frontend servers, and just a representation of its state is sent to the backend server.

A session is considered a frontend session if it is being accessed from a frontend server, and a backend session is accessed from a backend server. Each kind of session is better described below.

Frontend sessions

Sessions are associated to a connection in the frontend server, and can be retrieved by session ID or bound user ID in the server the connection was established, but cannot be retrieved from a different server.

Callbacks can be added to some session lifecycle changes, such as closing and binding. The callbacks can be on a per-session basis (with s.OnClose) or for every session (with OnSessionClose, OnSessionBind and OnAfterSessionBind).

Backend sessions

Backend sessions have access to the sessions through the handler’s methods, but they have some limitations and special characteristics. Changes to session variables must be pushed to the frontend server by calling s.PushToFront (this is not needed for s.Bind operations), setting callbacks to session lifecycle operations is also not allowed. One can also not retrieve a session by user ID from a backend server.

Communication

In this section we will describe in detail the communication process between the client and the server. From establishing the connection, sending a request and receiving a response. The example is going to assume the application is running in cluster mode and that the target server is not the same as the one the client is connected to.

Establishing the connection

The overview of what happens when a client connects and makes a request is:

	Establish low level connection with acceptor

	Pass the connection to the handler service

	Handler service creates a new agent for the connection

	Handler service reads message from the connection

	Message is decoded with configured decoder

	Decoded packet from the message is processed

	First packet must be a handshake request, to which the server returns a handshake response with the serializer, route dictionary and heartbeat timeout

	Client must then reply with a handshake ack, connection is then established

	Data messages are processed by the handler and the target server type is extracted from the message route, the message is deserialized using the specified method

	If the target server type is different from the current server, the server makes a remote call to the right type of server, selecting one server according to the routing function logic. The remote call includes the current representation of the client’s session

	The receiving remote server receives the request and handles it as a Sys RPC call, creating a new remote agent to handle the request, this agent receives the session’s representation

	The before pipeline functions are called and the handler message is deserialized

	The appropriate handler is then called by the remote server, which returns the response that is then serialized and the after pipeline functions are executed

	If the backend server wants to modify the session it needs to modify and push the modifications to the frontend server explicitly

	Once the frontend server receives the response it forwards the message to the session specifying the request message ID

	The agent receives the requests, encodes it and sends to the low-level connection

Acceptors

The first thing the client must do is establish a connection with the Pitaya server. And for that to happen, the server must have specified one or more acceptors.

Acceptors are the entities responsible for listening for connections, establishing them, abstracting and forwarding them to the handler service. Pitaya comes with support for TCP and websocket acceptors. Custom acceptors can be implemented and added to Pitaya applications, they just need to implement the proper interface.

Handler service

After the low level connection is established it is passed to the handler service to handle. The handler service is responsible for handling the lifecycle of the clients’ connections. It reads from the low-level connection, decodes the received packets and handles them properly, calling the local server’s handler if the target server type is the same as the local one or forwarding the message to the remote service otherwise.

Pitaya has a configuration to define the number of concurrent messages being processed at the same time, both local and remote messages count for the concurrency, so if the server expects to deal with slow routes this configuration might need to be tweaked a bit. The configuration is pitaya.concurrency.handler.dispatch.

Agent

The agent entity is responsible for storing information about the client’s connection, it stores the session, encoder, serializer, state, connection, among others. It is used to communicate with the client to send messages and also ensure the connection is kept alive.

Route compression

The application can define a dictionary of compressed routes before starting, these routes are sent to the clients on the handshake. Compressing the routes might be useful for the routes that are used a lot to reduce the communication overhead.

Handshake

The first operation that happens when a client connects is the handshake. The handshake is initiated by the client, who sends information about the client, such as platform, version of the client library, and others, and can also send user data in this step. This data is stored in the client’s session and can be accessed later. The server replies with heartbeat interval, name of the serializer and the dictionary of compressed routes.

In order to enforce specific requirements, validations can be performed on the data submitted by the client. These validations server as a means to verify that the client is adherent to predefined server rules. By that if the client does not comply with the specified criteria, access to the server capabilities can be restricted.

You can find more about the handshake validation here.

Remote service

The remote service is responsible both for making RPCs and for receiving and handling them. In the case of a forwarded client request the RPC is of type Sys.

In the calling side the service is responsible for identifying the proper server to be called, both by server type and by routing logic.

In the receiving side the service identifies it is a Sys RPC and creates a remote agent to handle the request. This remote agent is short-lived, living only while the request is alive, changes to the backend session do not automatically reflect in the associated frontend session, they need to be explicitly committed by pushing them. The message is then forwarded to the appropriate handler to be processed.

Pipeline

The pipeline in Pitaya is a set of functions that can be defined to be run before or after every handler request. The functions receive the context and the raw message and should return the request object and error, they are allowed to modify the context and return a modified request. If the before function returns an error the request fails and the process is aborted.

Serializer

The handler must first deserialize the message before processing it. So the function responsible for calling the handler method first deserializes the message, calls the method and then serializes the response returned by the method and returns it back to the remote service.

Handler

Each Pitaya server can register multiple handler structures, as long as they have different names. Each structure can have multiple methods and Pitaya will choose the right structure and methods based on the called route.

Configuration

Pitaya uses Viper to control its configuration. Below we describe the configuration variables split by topic. We judge the default values are good for most cases, but might need to be changed for some use cases.

Service Discovery

	These configuration values configure service discovery for the default etcd service discovery module.

	They only need to be set if the application runs in cluster mode.

	Configuration

	Default value

	Type

	Description

	pitaya.cluster.sd.etcd.dialtimeout

	5s

	time.Time

	Dial timeout value passed to the service discovery etcd client

	pitaya.cluster.sd.etcd.endpoints

	localhost:2379

	string

	List of comma separated etcd endpoints

	pitaya.cluster.sd.etcd.user

	
	string

	Username to connect to etcd

	pitaya.cluster.sd.etcd.pass

	
	string

	Password to connect to etcd

	pitaya.cluster.sd.etcd.heartbeat.ttl

	60s

	time.Time

	Hearbeat interval for the etcd lease

	pitaya.cluster.sd.etcd.grantlease.timeout

	60s

	time.Duration

	Timeout for etcd lease

	pitaya.cluster.sd.etcd.grantlease.maxretries

	15

	int

	Maximum number of attempts to etcd grant lease

	pitaya.cluster.sd.etcd.grantlease.retryinterval

	5s

	time.Duration

	Interval between each grant lease attempt

	pitaya.cluster.sd.etcd.revoke.timeout

	5s

	time.Duration

	Timeout for etcd’s revoke function

	pitaya.cluster.sd.etcd.heartbeat.log

	false

	bool

	Whether etcd heartbeats should be logged in debug mode

	pitaya.cluster.sd.etcd.prefix

	pitaya/

	string

	Prefix used to avoid collisions with different pitaya applications, servers must have the same prefix to be able to see each other

	pitaya.cluster.sd.etcd.syncservers.interval

	120s

	time.Duration

	Interval between server syncs performed by the service discovery module

	pitaya.cluster.sd.etcd.shutdown.delay

	10ms

	time.Duration

	Time to wait to shutdown after deregistering from service discovery

	pitaya.cluster.sd.etcd.servertypeblacklist

	nil

	[]string

	A list of server types that should be ignored by the service discovery

	pitaya.cluster.sd.etcd.syncservers.parallelism

	10

	int

	The number of goroutines that should be used while getting server information on etcd initialization

RPC Service

The configurations only need to be set if the RPC Service is enabled with the given type.

	Configuration

	Default value

	Type

	Description

	pitaya.cluster.rpc.server.nats.buffer.messages

	75

	int

	Size of the buffer that for the nats RPC server accepts before starting to drop incoming messages

	pitaya.cluster.rpc.server.nats.buffer.push

	100

	int

	Size of the buffer that the nats RPC server creates for push messages

	pitaya.cluster.rpc.client.grpc.dialtimeout

	5s

	time.Time

	Timeout for the gRPC client to establish the connection

	pitaya.cluster.rpc.client.grpc.lazyconnection

	false

	bool

	Whether the gRPC client should use a lazy connection, that is, connect only when a request is made to that server

	pitaya.cluster.rpc.client.grpc.requesttimeout

	5s

	time.Time

	Request timeout for RPC calls with the gRPC client

	pitaya.cluster.rpc.client.nats.connect

	nats://localhost:4222

	string

	Nats address for the client

	pitaya.cluster.rpc.client.nats.connectiontimeout

	5s

	time.Duration

	Timeout for the nats client to establish the connection

	pitaya.cluster.rpc.client.nats.requesttimeout

	5s

	time.Time

	Request timeout for RPC calls with the nats client

	pitaya.cluster.rpc.client.nats.maxreconnectionretries

	15

	int

	Maximum number of retries to reconnect to nats for the client

	pitaya.cluster.rpc.server.nats.connect

	nats://localhost:4222

	string

	Nats address for the server

	pitaya.cluster.rpc.server.nats.connectiontimeout

	5s

	time.Duration

	Timeout for the nats server to establish the connection

	pitaya.cluster.rpc.server.nats.maxreconnectionretries

	15

	int

	Maximum number of retries to reconnect to nats for the server

	pitaya.cluster.rpc.server.grpc.port

	3434

	int

	The port that the gRPC server listens to

	pitaya.cluster.rpc.server.nats.services

	30

	int

	Number of goroutines processing messages at the remote service for the nats RPC service

	pitaya.worker.redis.url

	localhost:6379

	string

	Redis url pitaya workers use to register jobs

	pitaya.worker.redis.pool

	10

	string

	Number of connections to keep with Redis

	pitaya.worker.redis.password

	“”

	string

	Redis password to connect to pitaya workers redis

	pitaya.worker.concurrency

	1

	int

	Number of workers to execute job

	pitaya.worker.namespace

	“”

	string

	Worker namespace, can be used to differ stacks in a blue-green deployment

	pitaya.worker.retry.enabled

	true

	bool

	If true, retry job if errored for max times

	pitaya.worker.retry.max

	5

	int

	Max number of job retries

	pitaya.worker.retry.exponential

	2

	int

	Retry job after backoff of nRetry**2

	pitaya.worker.retry.minDelay

	0

	int

	Min time to wait on backoff to retry job

	pitaya.worker.retry.maxDelay

	10

	int

	Max time to wait on backoff to retry job

	pitaya.worker.retry.maxRandom

	10

	int

	Random time to wait during backoff

Connection

	Configuration

	Default value

	Type

	Description

	pitaya.handler.messages.compression

	true

	bool

	Whether messages between client and server should be compressed

	pitaya.heartbeat.interval

	30s

	time.Time

	Keepalive heartbeat interval for the client connection

	pitaya.conn.ratelimiting.interval

	1s

	time.Duration

	Window of time to count requests

	pitaya.conn.ratelimiting.limit

	20

	int

	Max number of requests allowed in a interval

	pitaya.conn.ratelimiting.forcedisable

	false

	bool

	If true, ignores rate limiting even when added with WithWrappers

Metrics Reporting

	Configuration

	Default value

	Type

	Description

	pitaya.metrics.statsd.enabled

	false

	bool

	Whether statsd reporting should be enabled

	pitaya.metrics.statsd.host

	localhost:9125

	string

	Address of the statsd server to send the metrics to

	pitaya.metrics.statsd.prefix

	pitaya.

	string

	Prefix of the metrics reported to statsd

	pitaya.metrics.statsd.rate

	1

	int

	Statsd metrics rate

	pitaya.metrics.prometheus.enabled

	false

	bool

	Whether prometheus reporting should be enabled

	pitaya.metrics.prometheus.port

	9090

	int

	Port to expose prometheus metrics

	pitaya.metrics.constTags

	map[string]string{}

	map[string]string

	Constant tags to be added to reported metrics

	pitaya.metrics.prometheus.additionalTags

	map[string]string{}

	map[string]string

	Additional tags to reported metrics, the map is from tag to default value

	pitaya.metrics.period

	15s

	string

	Period that system metrics will be reported

	pitaya.metrics.custom.counters

	[]map[string]interface{}

	[]map[string]interface

	Custom metrics counter

	pitaya.metrics.custom.counters[].Subsystem

	“”

	string

	Custom counter subsystem name

	pitaya.metrics.custom.counters[].Name

	“”

	string

	Custom counter name, must not be empty

	pitaya.metrics.custom.counters[].Help

	“”

	string

	Custom counter help which explain what is the metric, must not be empty

	pitaya.metrics.custom.counters[].Labels

	[]string{}

	[]string

	Custom counter labels the metric will carry

	pitaya.metrics.custom.gauges

	[]map[string]interface{}

	[]map[string]interface

	Custom metrics gauge

	pitaya.metrics.custom.gauges[].Subsystem

	“”

	string

	Custom gauge subsystem name

	pitaya.metrics.custom.gauges[].Name

	“”

	string

	Custom gauge name, must not be empty

	pitaya.metrics.custom.gauges[].Help

	“”

	string

	Custom gauge help which explain what is the metric, must not be empty

	pitaya.metrics.custom.gauges[].Labels

	[]string{}

	[]string

	Custom gauge labels the metric will carry

	pitaya.metrics.custom.summaries

	[]map[string]interface{}

	[]map[string]interface

	Custom metrics summary

	pitaya.metrics.custom.summaries[].Subsystem

	“”

	string

	Custom summary subsystem name

	pitaya.metrics.custom.summaries[].Name

	“”

	string

	Custom summary name, must not be empty

	pitaya.metrics.custom.summaries[].Help

	“”

	string

	Custom summary help which explain what is the metric, must not be empty

	pitaya.metrics.custom.summaries[].Labels

	[]string{}

	[]string

	Custom summary labels the metric will carry

	pitaya.metrics.custom.summaries[].Objectives

	map[float64]float64

	map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001}

	Custom summary objectives with quantiles

Concurrency

	Configuration

	Default value

	Type

	Description

	pitaya.buffer.agent.messages

	100

	int

	Buffer size for received client messages for each agent

	pitaya.buffer.handler.localprocess

	20

	int

	Buffer size for messages received by the handler and processed locally

	pitaya.buffer.handler.remoteprocess

	20

	int

	Buffer size for messages received by the handler and forwarded to remote servers

	pitaya.concurrency.handler.dispatch

	25

	int

	Number of goroutines processing messages at the handler service

Modules

These configurations are only used if the modules are created. It is recommended to use Binding Storage module with gRPC RPC service to be able to use all RPC service features.

	Configuration

	Default value

	Type

	Description

	pitaya.session.unique

	true

	bool

	Whether Pitaya should enforce unique sessions for the clients, enabling the unique sessions module

	pitaya.modules.bindingstorage.etcd.endpoints

	localhost:2379

	string

	Comma separated list of etcd endpoints to be used by the binding storage module, should be the same as the service discovery etcd

	pitaya.modules.bindingstorage.etcd.prefix

	pitaya/

	string

	Prefix used for etcd, should be the same as the service discovery

	pitaya.modules.bindingstorage.etcd.dialtimeout

	5s

	time.Time

	Timeout to establish the etcd connection

	pitaya.modules.bindingstorage.etcd.leasettl

	1h

	time.Time

	Duration of the etcd lease before automatic renewal

Default Pipelines

These configurations control if the default pipelines should be enabled or not

	Configuration

	Default value

	Type

	Description

	pitaya.defaultpipelines.structvalidation.enabled

	false

	bool

	Whether Pitaya should enable the default struct validator for handler arguments

Groups

These configurations are used for group services implementations.

	Configuration

	Default value

	Type

	Description

	pitaya.groups.etcd.endpoints

	localhost:2379

	string

	Comma separated list of etcd endpoints to be used by the groups etcd service

	pitaya.groups.etcd.prefix

	pitaya/

	string

	Prefix used for every group key in etcd

	pitaya.groups.etcd.dialtimeout

	5s

	time.Time

	Timeout to establish the etcd group connection

	pitaya.groups.etcd.transactiontimeout

	5s

	time.Duration

	Timeout to finish group request to Etcd

	pitaya.groups.memory.tickduration

	30s

	time.Duration

	Duration time of tick that will check if should delete group or not

Pitaya API

Handlers

Handlers are one of the core features of Pitaya, they are the entities responsible for receiving the requests from the clients and handling them, returning the response if the method is a request handler, or nothing, if the method is a notify handler.

Signature

Handlers must be public methods of the struct and have a signature following:

Arguments

	context.Context: the context of the request, which contains the client’s session.

	pointer or []byte: the payload of the request (optional).

Notify handlers return nothing, while request handlers must return:

	pointer or []byte: the response payload

	error: an error variable

Registering handlers

Handlers must be explicitly registered by the application by calling a pitaya app’s Register with a instance of the handler component. The handler’s name can be defined by calling pitaya/component.WithName("handlerName") and the methods can be renamed by using pitaya/component.WithNameFunc(func(string) string).

The clients can call the handler by calling serverType.handlerName.methodName.

Routing messages

Messages are forwarded by pitaya to the appropriate server type, and custom routers can be added to the application by calling a pitaya app’s AddRoute, it expects two arguments:

	serverType: the server type of the target requests to be routed

	routingFunction: the routing function with the signature func(session.Session, *route.Route, []byte, map[string]*cluster.Server) (*cluster.Server, error), it receives the user’s session, the route being requested, the message and the map of valid servers of the given type, the key being the servers’ ids

The server will then use the routing function when routing requests to the given server type.

Lifecycle Methods

Handlers can optionally implement the following lifecycle methods:

	Init() - Called by Pitaya when initializing the application

	AfterInit() - Called by Pitaya after initializing the application

	BeforeShutdown() - Called by Pitaya when shutting down components, but before calling shutdown

	Shutdown() - Called by Pitaya after the start of shutdown

Handler example

Below is a very barebones example of a handler definition, for a complete working example, check the cluster demo [https://github.com/topfreegames/pitaya/tree/master/examples/demo/cluster].

import (
 "github.com/topfreegames/pitaya"
 "github.com/topfreegames/pitaya/component"
)

type Handler struct {
 component.Base
}

type UserRequestMessage struct {
 Name string `json:"name"`
 Content string `json:"content"`
}

type UserResponseMessage {
}

type UserPushMessage{
 Command string `json:"cmd"`
}

// Init runs on service initialization (not required to be defined)
func (h *Handler) Init() {}

// AfterInit runs after initialization (not required to be defined)
func (h *Handler) AfterInit() {}

// TestRequest can be called by the client by calling <servertype>.testhandler.testrequest
func (h *Handler) TestRequest(ctx context.Context, msg *UserRequestMessage) (*UserResponseMessage, error) {
 return &UserResponseMessage{}, nil
}

func (h *Handler) TestPush(ctx context.Context, msg *UserPushMessage) {
}

func main() {
 builder := pitaya.NewDefaultBuilder()
 ...
 app := builder.Build()

 app.Register(
 &Handler{}, // struct to register as handler
 component.WithName("testhandler"), // name of the handler, used by the clients
 component.WithNameFunc(strings.ToLower), // naming conversion scheme to be used by the clients
)
 ...
 app.Start()
}

Remotes

Remotes are one of the core features of Pitaya, they are the entities responsible for receiving the RPCs from other Pitaya servers.

Signature

Remotes must be public methods of the struct and have a signature following:

Arguments

	context.Context: the context of the request.

	proto.Message: the payload of the request (optional).

Remote methods must return:

	proto.Message: the response payload in protobuf format

	error: an error variable

Registering remotes

Remotes must be explicitly registered by the application by calling a pitaya app’s RegisterRemote with a instance of the remote component. The remote’s name can be defined by calling pitaya/component.WithName("remoteName") and the methods can be renamed by using pitaya/component.WithNameFunc(func(string) string).

The servers can call the remote by calling serverType.remoteName.methodName.

RPC calls

There are two options when sending RPCs between servers:

	Specify only server type: In this case Pitaya will select one of the available servers at random

	Specify server type and ID: In this scenario Pitaya will send the RPC to the specified server

Lifecycle Methods

Remotes can optionally implement the following lifecycle methods:

	Init() - Called by Pitaya when initializing the application

	AfterInit() - Called by Pitaya after initializing the application

	BeforeShutdown() - Called by Pitaya when shutting down components, but before calling shutdown

	Shutdown() - Called by Pitaya after the start of shutdown

Remote example

For a complete working example, check the cluster demo [https://github.com/topfreegames/pitaya/tree/master/examples/demo/cluster].

Pitaya CLI

A REPL cli client made in go for pitaya.

Installing

go install github.com/topfreegames/pitaya/v2/pitaya-cli

Usage

For cli flags, run pitaya-cli --help

$ pitaya-cli

Pitaya REPL Client
>>> help

Commands:
 clear clear the screen
 connect connects to pitaya
 disconnect disconnects from pitaya server
 exit exit the program
 help display help
 notify makes a notify to pitaya server
 push insert information of push return
 request makes a request to pitaya server
 sethandshake sets a handshake parameter

Protobuf

For connecting to a server that uses protobuf as serializer the server must implement two routes:

	Docs: responsible for returning all handlers and the protos used on input and
output;

	Descriptors: The list of protos descriptions, this will be used by the CLI to
encode/decode the messages.

To implement those routes you can use some functions provided by pitaya, here is
a short example of both routes:

import (
	// ...

	"github.com/topfreegames/pitaya"
	"github.com/topfreegames/pitaya/protos"
)

// Docs handler
func (c *MyHandler) Docs(ctx context.Context) (*protos.Doc, error) {
	d, err := pitaya.Documentation(true)
	if err != nil {
		return nil, fmt.Errorf("failed to generate documentation for pitaya routes: %w", err)
	}

	doc, err := json.Marshal(d)
	if err != nil {
		return nil, fmt.Errorf("failed to encode documentation JSON: %w", err)
	}

	return &protos.Doc{Doc: string(doc)}, nil
}

// Descriptors route
func (c *MyHandler) Descriptors(ctx context.Context, names *protos.ProtoNames) (*protos.ProtoDescriptors, error) {
	descriptors := make([][]byte, len(names.Name))

	for i, protoName := range names.Name {
		desc, err := pitaya.Descriptor(protoName)
		if err != nil {
			return nil, fmt.Errorf("failed to get descriptor for '%s': %w", protoName, err)
		}

		descriptors[i] = desc
	}

	return &protos.ProtoDescriptors{Desc: descriptors}, nil
}

When initilizing the CLI, you have to provide the docs route as the following:

pitaya-cli -docs connector.docsHandler.docs

NOTE: The descriptors handler is automatically discovered by the client.
It must only follow the signature mentioned earlier.

A full example of running pitaya-cli with protobuf:

pitaya-cli -docs connector.docsHandler.docs
>>> push connector.playerHandler.matchfound protos.FindMatchPush
>>> connect localhost:30124
>>> request connector.playerHandler.create
>>> request connector.playerHandler.findmatch {"RoomType":"xxxx"}

Set handshake parameters

You can edit handshake parameters before connecting to the server.

You may pass the full handshake json:

Pitaya REPL Client
>>> sethandshake {"sys":{"clientVersion":"1.0.6", "clientBuildNumber":"999","platform":"ios"}}

Or edit one of three specific parameters:

Pitaya REPL Client
>>> sethandshake platform ios
>>> sethandshake buildNumber 999
>>> sethandshake version 1.0.6

Read commands from file

It’s possible to add a list of sequential requests into a file and pitaya-cli will execute them in order.

For example: commands.txt

connect localhost:3250
request connector.playerHandler.create
request connector.playerHandler.findmatch {"RoomType":"xxxx"}

Then run: pitaya-cli --filename commands.txt

Examples

Example projects can be found here [https://github.com/topfreegames/pitaya/tree/master/examples/demo]

Tracing

Pitaya supports tracing using OpenTracing [http://opentracing.io/].

Using Jaeger tracing

First set the required environment variables:

export JAEGER_DISABLED=false
export JAEGER_SERVICE_NAME=my-pitaya-server
export JAEGER_SAMPLER_PARAM=1 #Ajust accordingly

With these environment variables set, you can use the following code to configure Jaeger:

func configureJaeger(config *viper.Viper, logger logrus.FieldLogger) {
	cfg, err := jaegercfg.FromEnv()
	if cfg.ServiceName == "" {
		logger.Error("Could not init jaeger tracer without ServiceName, either set environment JAEGER_SERVICE_NAME or cfg.ServiceName = \"my-api\"")
		return
	}
	if err != nil {
		logger.Error("Could not parse Jaeger env vars: %s", err.Error())
		return
	}
	options := jaeger.Options{ // import "github.com/topfreegames/pitaya/v2/tracing/jaeger"
		Disabled: cfg.Disabled,
		Probability: cfg.Sampler.Param,
		ServiceName: cfg.ServiceName,
	}
	jaeger.Configure(options)
}

Then in your main function:

func main() {
 // ...
 configureJaeger(config, logger)
 // ...
}

Ensure to run this Jaeger initialization code in all your server types. Only changing the “JAEGER_SERVICE_NAME” env var between different types.

Testing Locally

make run-jaeger-aio
make run-cluster-example-frontend-tracing
make run-cluster-example-backend-tracing

Then access Jaeger UI at http://localhost:16686

Index

Builder

Pitaya offers a Builder object which can be utilized to define a sort of pitaya properties.

PostBuildHooks

Post-build hooks can be used to execute additional actions automatically after the build process. It also allows you to interact with the built pitaya app.

A common use case is where it becomes necessary to perform configuration steps in both the pitaya builder and the pitaya app being built. In such cases, an effective approach is to internalize these configurations, enabling you to handle them collectively in a single operation or process. It simplifies the overall configuration process, reducing the need for separate and potentially repetitive steps.

// main.go
cfg := config.NewDefaultBuilderConfig()
builder := pitaya.NewDefaultBuilder(isFrontEnd, "my-server-type", pitaya.Cluster, map[string]string{}, *cfg)

customModule := NewCustomModule(builder)
customModule.ConfigurePitaya(builder)

app := builder.Build()

// custom_object.go
type CustomObject struct {
	builder *pitaya.Builder
}

func NewCustomObject(builder *pitaya.Builder) *CustomObject {
	return &CustomObject{
		builder: builder,
	}
}

func (object *CustomObject) ConfigurePitaya() {
	object.builder.AddAcceptor(...)
	object.builder.AddPostBuildHook(func (app pitaya.App) {
		app.Register(...)
	})
}

In the above example the ConfigurePitaya method of the CustomObject is adding an Acceptor to the pitaya app being built, and also adding a post-build function which will register a handler Component that will expose endpoints to receive calls.

Handshake Validators

Pitaya allows to defined Handshake Validators.

The primary purpose of these validators is to perform validation checks on the data transmitted by the client. The validators play a crucial role in verifying the integrity and reliability of the client’s input before establishing a connection.

In addition to data validation, handshake validators can also execute other custom logic to assess the client’s compliance with the server-defined requirements. This additional logic may involve evaluating factors such as authenticating credentials, permissions, or any other criteria necessary to determine the client’s eligibility to access the server.

Adding handshake validators

To ensure the effective utilization of these validators, they should be added to the SessionPool component. As a result, each newly created session within the SessionPool will automatically incorporate the designated validators.

Once the handshake process is initiated, the validators will be invoked to execute their validation routines.

cfg := config.NewDefaultBuilderConfig()
builder := pitaya.NewDefaultBuilder(isFrontEnd, "my-server-type", pitaya.Cluster, map[string]string{}, *cfg)
builder.SessionPool.AddHandshakeValidator("MyCustomValidator", func (data *session.HandshakeData) error {
	if data.Sys.Version != "1.0.0" {
		return errors.New("Unknown client version")
	}

	return nil
})

As a result of the validation process, if an error is encountered, the server will transmit a message to client within the code 400. This code emulates the widely recognized HTTP Bad Request status code, indicating that the client’s request could not be fulfilled due to invalid data. Otherwise, if the validation process succeeds, the server will dispatch a message to client containing a code 200, mirroring the HTTP Ok status code.

Is important to mention that, when there are many validator functions, the validation will stop as soon it encounters the first error.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pitaya’s documentation!

 		
 Overview

 		
 Features

 		
 Architecture

 		
 Who’s Using it

 		
 How To Contribute?

 		
 Features

 		
 Frontend and backend servers

 		
 Groups

 		
 Listeners

 		
 Acceptor Wrappers

 		
 Rate limiting

 		
 Message forwarding

 		
 Message push

 		
 Modules

 		
 Binary

 		
 Unique session

 		
 Binding storage

 		
 Monitoring

 		
 Custom Metrics

 		
 Pipelines

 		
 RPCs

 		
 Sys RPCs

 		
 User RPCs

 		
 User Reliable RPCs

 		
 Server operation mode

 		
 Standalone mode

 		
 Cluster mode

 		
 Serializers

 		
 Service discovery

 		
 Sessions

 		
 Frontend sessions

 		
 Backend sessions

 		
 Communication

 		
 Establishing the connection

 		
 Acceptors

 		
 Handler service

 		
 Agent

 		
 Route compression

 		
 Handshake

 		
 Remote service

 		
 Pipeline

 		
 Serializer

 		
 Handler

 		
 Configuration

 		
 Service Discovery

 		
 RPC Service

 		
 Connection

 		
 Metrics Reporting

 		
 Concurrency

 		
 Modules

 		
 Default Pipelines

 		
 Groups

 		
 Pitaya API

 		
 Handlers

 		
 Signature

 		
 Registering handlers

 		
 Routing messages

 		
 Lifecycle Methods

 		
 Handler example

 		
 Remotes

 		
 Signature

 		
 Registering remotes

 		
 RPC calls

 		
 Lifecycle Methods

 		
 Remote example

 		
 Pitaya CLI

 		
 Installing

 		
 Usage

 		
 Protobuf

 		
 Set handshake parameters

 		
 Read commands from file

 		
 Examples

 		
 Tracing

 		
 Using Jaeger tracing

 		
 Testing Locally

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

